首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   13篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   6篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
31.
The effect of solR inactivation on the metabolism of Clostridium acetobutylicum was examined using fermentation characterization and metabolic flux analysis. The solR-inactivated strain (SolRH) of this study had a higher rate of glucose utilization and produced higher solvent concentrations (by 25%, 14%, and 81%, respectively, for butanol, acetone, and ethanol) compared to the wild type. Strain SolRH(pTAAD), carrying a plasmid-encoded copy of the bifunctional alcohol/aldehyde dehydrogenase gene (aad) used in butanol production, produced even higher concentrations of solvents (by 21%, 45%, and 62%, respectively, for butanol, acetone, and ethanol) than strain SolRH. Clarithromycin used for strain SolRH maintenance during SolRH(pTAAD) fermentations did not alter product formation; however, tetracycline used for pTAAD maintenance resulted in 90% lower solvent production. Journal of Industrial Microbiology & Biotechnology (2001) 27, 322–328. Received 12 September 2000/ Accepted in revised form 21 July 2001  相似文献   
32.
Mexico is the main producer, consumer and exporter of avocado in the world, being Michoacan the main producer state contributing more than 80% of the national production. There are phytopathogens that decimate the production causing the death of the tree. Root samples were collected in avocado trees that showed the characteristic symptomatology of the disease known as avocado sadness, the sampling was carried out in four of the main avocado producing towns, in the state of Michoacan, Mexico. The isolation consisted in sowing root tissue in Petri dishes with V8®-PARPH culture medium, subsequently they were identified morphologically and for species level it was determined by molecular biology, with the PCR-ITS technique. Pathogenicity tests were performed in triplicate with avocado seedlings with more than six leaves. After 24 hours, the inoculated plants expressed decay in the apical part, after 120 hours the leaves showed yellowing and after 15 days there was a generalized wilt on the stem and leaves, re-isolating the phytopathogen Phytopythium vexans. This study confirms the first report of the oomycete P. vexans affecting avocado trees in the most important producing region of the Mexican Republic.  相似文献   
33.
34.
We have now sufficient evidence that using electrical biosignals in the field of Alternative and Augmented Communication is feasible. Additionally, they are particularly suitable in the case of people with severe motor impairment, e.g. people with high-level spinal cord injury or with locked-up syndrome. Developing solutions for them implies that we find ways to use sensors that fit the user's needs and limitations, which in turn impacts the specifications of the system translating the user's intentions into commands. After devising solutions for a given user or profile, the system should be evaluated with an appropriate method, allowing a comparison with other solutions. This paper submits a review of the way three bioelectrical signals - electromyographic, electrooculographic and electroencephalographic - have been utilised in alternative communication with patients suffering severe motor restrictions. It also offers a comparative study of the various methods applied to measure the performance of AAC systems.  相似文献   
35.
36.
37.
38.
Pepper is a vegetable of importance in human nutrition. Currently, one of the most interesting properties of natural products is their antioxidant content. In this work, the purification and characterisation of peroxisomes from fruits of a higher plant was carried out, and their antioxidative enzymatic and non-enzymatic content was investigated. Green and red pepper fruits (Capsicum annuum L., type Lamuyo) were used in this study. The analysis by electron microscopy showed that peroxisomes from both types of fruits contained crystalline cores which varied in shape and size, and the presence of chloroplasts and chromoplasts in green and red pepper fruits, respectively, was confirmed.

Peroxisomes were purified by differential and sucrose density-gradient centrifugations. In the peroxisomal fractions, the activity of the photorespiration, β-oxidation and glyoxylate cycle enzymes, and the ROS-related enzymes catalase, superoxide dismutase, xanthine oxidase, glutathione reductase and NADP+-dehydrogenases, was determined. Most enzymes studied had higher specific activity and protein content in green than in red fruits. By native PAGE and western blot analysis, the localisation of a Mn-SOD in fruit peroxisomes was demonstrated. The ascorbate and glutathione levels were also determined in crude extracts and in peroxisomes purified from both green and red peppers. The total ascorbate content (200-220 mg per 100 g FW) was similar in crude extracts from the two types of fruits, but higher in peroxisomes from red peppers. The glutathione concentration was 2-fold greater in green pepper crude extracts than in red fruits, whereas peroxisomes from both tissues showed similar values. The presence in pepper peroxisomes of different antioxidative enzymes and their corresponding metabolites implies that these organelles might be an important pool of antioxidants in fruit cells, where these enzymes could also act as modulators of signal molecules (O2˙-, H2O2) during fruit maturation.  相似文献   

39.
40.
Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes   总被引:22,自引:0,他引:22  
Peroxisomes are subcellular organelles with an essentially oxidative type of metabolism. Like chloroplasts and mitochondria, plant peroxisomes also produce superoxide radicals (O2*(-)) and there are, at least, two sites of superoxide generation: one in the organelle matrix, the generating system being xanthine oxidase, and another site in the peroxisomal membranes dependent on NAD(P)H. In peroxisomal membranes, three integral polypeptides (PMPs) with molecular masses of 18, 29 and 32 kDa have been shown to generate radicals O2*(-). Besides catalase, several antioxidative systems have been demonstrated in plant peroxisomes, including different superoxide dismutases, the ascorbate-glutathione cycle, and three NADP-dependent dehydrogenases. A CuZn-SOD and two Mn-SODs have been purified and characterized from different types of peroxisomes. The four enzymes of the ascorbate-glutathione cycle (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase) as well as the antioxidants glutathione and ascorbate have been found in plant peroxisomes. The recycling of NADPH from NADP(+) can be carried out in peroxisomes by three dehydrogenases: glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and isocitrate dehydrogenase. In the last decade, different experimental evidence has suggested the existence of cellular functions for peroxisomes related to reactive oxygen species (ROS), but the recent demonstration of the presence of nitric oxide synthase (NOS) in plant peroxisomes implies that these organelles could also have a function in plant cells as a source of signal molecules like nitric oxide (NO*), superoxide radicals, hydrogen peroxide, and possibly S-nitrosoglutathione (GSNO).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号